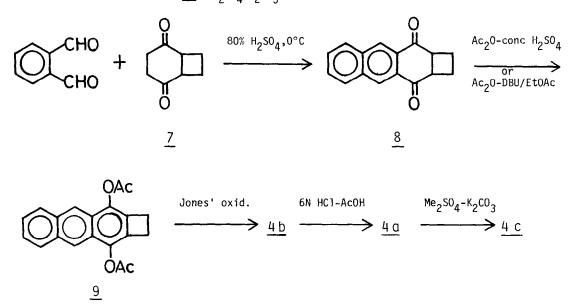
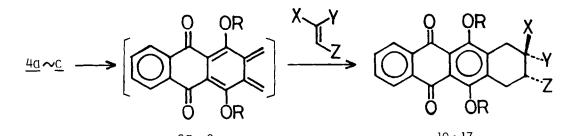

1,2-DIHYDRO-3,10-DIHYDROXYCYCLOBUT[b]ANTHRACENE-4,9-DIONE A KEY INTERMEDIATE FOR 4-DEMETHOXYANTHRACYCLINONES

Takashi Watabe, Yoshito Takahashi, and Masaji Oda Department of Chemistry, Faculty of Science, Osaka University Toyonaka, Osaka 560, Japan

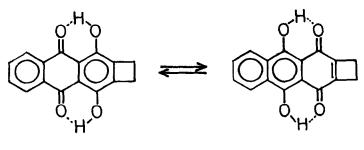
Summary: The title compound synthesized in four steps from bicyclo[4.2.0]octane-2,5dione and o-phthaldehyde undergoes cleanly thermolytic intermolecular Diels-Alder reactions providing a general synthesis of 7,8,9,10-tetrahydro-6,11-dihydroxy-5,12-naphthacenediones, the compounds being related to anthracyclinones.


Potent anticancer activity of the anthracycline antibiotics such as daunomycin 1, 4-demethoxydaunomycin 2, and adriamycin 3 has stimulated much research on the synthetic methods for the tetracyclic aglycons.¹⁾ The dose-dependent cardiotoxicity²⁾ of these agents has also made it important to search for less toxic structural analogues. Accordingly, it would be useful to develope a common synthon which allows to prepare a variety of analogues as well as anthracyclinones. Cava et al. have reported a Diels-Alder approach in which the o-quinodimethane analogues 6 generated from the corresponding bis(bromomethyl)quinizarins <u>5</u> by action of zinc or sodium iodide were key intermediates.³⁾ Although 6 thus generated gave Diels-Alder adducts in moderate yields with simple dienophiles, it did in rather poor yields with more functionalized dienophiles even in the presence of a large excess of reagents. Since 1,2-dihydrobenzocyclobutenes undergo ring-opening to o-quinodimethanes under purely thermal conditions, it would be expected that thermolytic Diels-Alder reactions of the cyclobutene-ring fused quinizarin 4a, the title compound, could render improvements in respect to yield and applicability. We wish here to report the synthesis of 4a \sim c and their promising thermolytic Diels-Alder reactions leading to the precursors of 4-demethoxydaunomycinone and the related compounds.


We previously reported an efficient and general synthesis of bicyclo[4.2.0]octane-2,5-diones.⁴⁾ Our synthesis of $4a \sim c$ starts from the diketone <u>7</u>.

Condensation of <u>7</u> and ϕ -phthaldehyde in 80% H₂SO₄ (0°C, 1 h) gave the tetracyclic diketone <u>8</u>⁵⁾ in 80% yield. Condensation under basic conditions resulted in much poorer yield of <u>8</u> due to the formation of several by-products.⁶⁾ The diketone <u>8</u> was then converted into the diacetoxyanthracene <u>9</u>⁵⁾ by treatment with either acetic anhydride and a trace of conc. H₂SO₄ (100°C, 2 h, 81%) or acetic anhydride and 1,8-diazabicyclo[5.4.0]undec-7-ene in ethyl acetate (reflux, 5 h, 88%). Oxidation of <u>9</u> with Jones' reagent (3 mol. equiv., room temp., acetone, 1 day) provided the desired quinone <u>4b</u>⁵⁾ in 90% yield. Under these conditions the oxidation proceeded cleanly, whereas the oxidation with CrO₃ in aqueous acetic acid which had been employed in similar oxidations⁷⁾ produced a hardly separable mixture of products though <u>4b</u> was a major component (αa . 50% by ¹H NMR). Hydrolysis of <u>4b</u> with 6N HCl-AcOH (1:1; reflux, 0.5 h) cleanly gave <u>4a</u>⁵⁾ as orange-red needles in 97% yield. The dimethoxyquinone <u>4c</u>⁵⁾ was obtained by methylation of <u>4a</u> (Me₂SO₄-K₂CO₃-2-butanone, reflux, 2 h, 98%).

Thermolytic Diels-Alder reactions of $\underline{4a} \sim \underline{c}$ turned out encouraging, and the results with a number of dienophiles are summarized in Table 1. The dihydroxyquinone $\underline{4a}$ shows better prospects than $\underline{4b}$ and $\underline{4c}$ for the anthracyclinone synthesis: i) while $\underline{4b}$ and $\underline{4c}$ undergo the ring-opening at about 200°C, $\underline{4a}$ does at lower temperature, even at 160°C, and ii) $\underline{4a}$ appears to give cycloadducts in better yields than $\underline{4b}$ and $\underline{4c}$. The tautomerism between $\underline{4a}$ and $\underline{4a'}$



 $\frac{60 \sim C}{10 \sim 17}$ Table 1. Thermolytic Diels-Alder reactions of <u>4a</u> \sim <u>c</u> with dienophiles^a

Entry No.	Compd.	Dienophile	Mol. equiv.	Temp. °C	Time h		Product	Mp. °C	Yield %
1	<u>4a</u>	Methyl vinyl ketone	4	200	5	<u>10</u>	R=H, X=COCH ₃ Y=Z=H	198 - 202 ^b	98
2	<u>4b</u>	Methyl vinyl ketone	4	200	5	<u>11</u>	R=X=COCH ₃ Y=Z=H	200-201 ^c	88
3	<u>4c</u>	Methyl vinyl ketone	4	220	5	<u>12</u>	R=CH ₃ , X=COCH ₃ Y=Z=H	146-148 ^d	89
4	<u>4a</u>	Methyl acrylate	4	200	5	<u>13</u>	R=H, X=COOCH ₃ ⁶⁾	196-197	98
5	<u>4a</u>	Methyl methacrylate	4	180	6	<u>14</u>	Y=Z=H R=H, X=COOCH ₃ ⁶)	202-204	78
6	<u>4a</u>	Methyl crotonate	10 4	180 180	6	<u>15</u>	Y=CH ₃ , Z=H R=H, X=COOCH ₃ ⁶)	199-202	93 53
7	<u>4a</u>	3-Acetoxy-3- buten-2-one	4	180	6	<u>16</u>	Y=H, Z=CH ₃ R=H, X=COCH ₃ ^e	210-213 ^f	41 ^e
8	<u>4a</u>	3-Benzoyloxy-3- buten-2-one	4	180	6	<u>16</u>	Y=OH, Z=H		51 ^e
9	<u>4a</u>	N-Phenylmaleimide	2	200	5	<u>17</u>	R≠X=H Y∽Z=CONPhCO	<i>ca</i> .300 dec. ⁹	91

^aReactions were performed in a sealed tube using o-dichlorobenzene as solvent. ^bLit. 198-202°C^{2a}). ^cLit. 197-199°C^{2b}). ^dLit. 147-149°C^{2a}). ^eAfter alkaline hydrolysis. ^fLit. 160-162°C^{2a,7a}), 190-193°C^{2a}), 210-212°C^{7b}). ^gLit. >290°C^{2a})

5626

might be responsible for the easier ring-opening of <u>4a</u> in view of much ready thermal ringopening of 1,2-dihydrobenzocyclobutene-3,6-dione relative to that of 1,2-dihydrobenzocyclobutene.⁸⁾ Accordingly, the cycloadditions were studied mostly on <u>4a</u>. With simple and/or typical dienophiles (entries $1 \sim 4$ and 9), <u>4a</u> $\sim c$ gave the adducts, <u>10</u> ~ 13 and <u>17</u>, in high yields. With more substituted and less reactive dienophiles (entries $5 \sim 8$), the yields of adducts <u>14</u> ~ 16 were lower but still fair to excellent. In the cases of entries 7 and 8, the product was isolated as 4-demethoxy-7-deoxydaunomycinone <u>16</u> after alkaline hydrolysis (2N NaOH-aq THF) because of some difficulty in purification of the primary adducts.

Thus, Diels-Alder reactions from $\underline{4}$ show considerable improvements compared to those from $\underline{5}^{2}$, *i.e.* the better yields of adducts, the requirement of much smaller quantity of dienophiles, and a wider applicability.

The present synthetic scheme of $\underline{4}$ should allow to prepare a number of its derivatives or analogues by choice of other aromatic 1,2-dialdehydes and substituted bicyclo[4.2.0]octane-2,5-diones, and further studies on $\underline{4a} \sim c$ and the related compounds are in progress.

References and Notes

- For reviews of synthetic approaches to the anthracyclines, see a) T. R. Kelly, Annu. Rep. Med. Chem., <u>14</u>, 288 (1979); b) T. Kametani and K. Fukumoto, Med. Res. Rev., <u>1</u>, 23 (1981); c) S. Terashima, Yuki Gosei Kagaku Kyokaishi, <u>40</u>, 20 (1982).
- 2) L. Lenaz and J. A. Page, Cancer Treat. Rev. 3, 111 (1976), and references cited therein.
- 3) a) F. A. J. Kerdeskey, R. J. Ardecky, M. V. Lakshmikantham, and M. P. Cava, J. Am. Chem. Soc., <u>103</u>, 1992 (1981); b) R. J. Ardecky, D. Dominguez, and M. P. Cava, J. Org. Chem., <u>47</u> 409 (1982).
- 4) M. Oda, H. Oikawa, Y. Kanao, and A. Yamamuro, Tetrahedron Lett., 4905 (1978).
- 5) Satisfactory elemental analyses and spectroscopic data were obtained for all the new compounds. The melting points and/or ¹H NMR data are following. <u>8</u>: mp 121-122°C; $\delta(\text{CDC1}_3)$ 2.0 \sim 3.0 (4H, m), 3.70 (2H, m), 7.68 (2H, m), 8.06 (2H, m), 8.67 (2H, s); <u>9</u>: mp 197°C decomp.; $\delta(\text{CDC1}_3)$ 2.46 (6H, s), 3.30 (4H, s), 7.44 (2H, m), 7.96 (2H, m), 8.43 (2H, s); <u>4a</u>: mp 186°C decomp.; $\delta(\text{CDC1}_3)$ 3.22 (4H, s), 7.80 (2H, m), 8.30 (2H, m), 13.10 (2H, s); <u>4b</u>: mp 200°C decomp.; $\delta(\text{CDC1}_3)$ 2.48 (6H, s), 3.16 (4H, s), 7.71 (2H, m), 8.12 (2H, m); <u>4c</u>: mp 184-185°C; $\delta(\text{CDC1}_3)$ 3.52 (4H, s), 4.07 (6H, s), 7.70 (2H, m), 8.10 (2H, m); <u>13</u>: $\delta(\text{CDC1}_3)$ 1.5 \sim 2.5 (3H, m), 2.6 \sim 3.2 (4H, m), 3.76 (3H, s), 7.81 (2H, m), 8.20 (2H, m), 13.22 (1H, s), 13.25 (1H, s); <u>14</u>: $\delta(\text{CDC1}_3)$ 1.36 (3H, s), 1.76 (1H, m), 2.23 (1H, m), 2.58 (1H, d, J=19 Hz), 2.86 (2H, m), 3.37 (1H, dd, J=19, 1 Hz), 3.69 (3H, s), 7.73 (2H, m), 8.25 (2H, m), 13.36 (1H, s), 13.43 (1H, s); <u>15</u>: $\delta(\text{CDC1}_3)$ 1.12 (3H, d, J=6 Hz), 1.8 \sim 2.5 (3H, m), 2.5 \sim 3.2 (3H, m), 3.77 (3H, s), 7.69 (2H, m), 8.18 (2H, m), 13.17 (2H, s).
- 6) The structures of the by-products have not yet been fully elucidated and will be described in a full paper.
- 7) a) A. S. Kende, D. P. Curran, Y. Tsay, and J. E. Mills, Tetrahedron Lett., 3537 (1977);
 b) J. R. Wiseman, N. I. French, R. K. Hallmark, and K. G. Chiong, Tetrahedron Lett., 3765 (1978); c) Y. Bessiere and P. Vogel, Helv. Chim. Acta, 63, 232 (1980).
- a) 1,2-Dihydrobenzocyclobutene-3,6-dione readily undergoes ring-opening at 140°C; Y. Kanao and
 M. Oda, Bull. Chem. Soc. Japan, in press.

(Received in Japan 12 August 1983)